前言
本次推出三篇文章,分别系统的总结了液压系统从安装到调试,以及维护的相关知识,非常适合现场安装调试指导工程师以及设备维护工程师去学习。
1. 液压系统的安装
液压系统安装质量的好坏是关系到液压系统能否可靠工作的关键。必须科学、正常、合理地完成安装过程中的每个环节,才能使液压系统能够正常运行,充分发挥其效能。
1.1 安装前的准备工作
1)明确安装现场施工程序及施工进度方案。
2)熟悉安装图样,掌握设备分布及设备基础情况。
3)落实好安装所需人员、机械、物资材料的准备工作。
4)做好液压设备的现场交货验收工作,根据设备清单进行验收。通过验收掌握设备名称、数量、随机备件、外观质量等情况,发现问题及时处理。
5)根据设计图纸对设备基础和预埋件进行检查,对液压设备地脚尺寸进行复核,对不符合要求的地方进行处理,防止影响施工进度。
1.2 液压设备的就位
1)液压设备应根据平面布置图对号吊装就位,大型成套液压设备,应由里向外依次进行吊装。
2)根据平面布置图测量调整设备安装中心线及标高点,可通过调整安装螺栓旁的垫板达到将设备调平找正,达到图纸要求。
3)由于设备基础相关尺寸存在误差,需在设备就位后进行微调,保证泵吸油管处于水平、正直对接状态,
4)油箱放油口及各装置集油盘放污口应在设备微调时给予考虑,应是设备水平状态时的最低点。
5)应对安装好的设备做适当防护,防止现场脏物污染系统。
6)设备就位调整完成后,一般需对设备底座下面进行混凝土浇灌,即二次灌浆。
1.3 液压配管
(1)管材选择
应根据系统压力及使用场合来选择管材。必须注意管子的强度是否足够,管径和壁厚是否符合图纸要求,所选用的无缝钢管内壁必须光洁、无锈蚀、无氧化皮、无夹皮等缺陷。若发现下列情况不能使用:管子内外壁已严重锈蚀。管体划痕深度为壁厚的10%以上;管体表面凹入达管径的20%以上;管断面壁厚不均、椭圆度比较明显等。
中、高压系统配管一般采用无缝钢管,因其具有强度高、价格低、易于实现无泄漏连接等优点,在液压系统中被广泛使用。普通液压系统常采用冷拔低碳钢10、15、20号无缝管,此钢号配管时能可靠地与各种标准管件焊接。液压伺服系统及航空液压系统常采用普通不锈钢管,具有耐腐蚀,内、外表面光洁,尺寸精确,但价格较高。
(2)管子加工
管子的加工包括切割、打坡口、弯管等内容。管子的加工好坏对管道系统参数影响较大,并关系到液压系统能否可靠运行。因此,必须采用科学、合理的加工方法,才能保证加工质量。
1)管子的切割原则上采用机械方法切割,如切割机或专用机床等,严禁用手工电焊、氧气切割方法,无条件时允许用手工锯切割。切割后的管子端面与轴向中心线应尽量保持垂直,误差控制在90°±0.5°。切割后需将锐边倒钝,并清除铁屑。
2)管子的弯曲加工最好在机械或液压弯管机上进行。用弯管机在冷状态下弯管,可避免产生氧化皮而影响管子质量。如无冷弯设备时也可采用热弯曲方法,热弯时容易产生变形、管壁减薄及产生氧化皮等现象。热弯前需将管内注实干燥河砂,用木塞封闭管口,用气焊或高频感应加热法对需弯曲部位加热,加热长度取决于管径和弯曲角度。比如直径为28mm的管子弯成30°、45°、60°和90°时,加热长度分别为60mm、100mm、120mm、和160mm;弯曲直径为34mm、42mm的管子,加热长度需比上述尺寸分别增加25~35mm。热弯后的管子需进行清砂并采用化学酸洗方法处理,清除氧化皮。弯曲管子应考虑弯曲半径。当弯曲半径过小时,会导致管路应力集中,降低管路强度。一般弯曲半径是管径的3~5倍。
(3)管路的敷设
管路敷设前,应认真熟悉配管图,明确各管路排列顺序、间距与走向,在现场对照配管图,确定阀门、接头、法兰及管夹的位置并划线、定位、管夹一般固定在预埋件上,管夹之间距离应适当,过小会造成浪费,过大将发生振动。推荐的管夹距离见表1。
表1 推荐管夹间距离(mm)
管路敷设一般遵循的原则:
①大口径的管子或靠近配管支架里侧的管子,应考虑优先敷设。
②管子尽量成水平或垂直两种排列,注意整齐一致,避免管路交叉。
③管路敷设位置或管件安装位置应便于管子的连接和检修,管路应靠近设备,便于固定管夹。
④敷设一组管线时,在转弯处一般采用90°及45°两种方式。
⑤两条平行或交叉管的管壁之间,必须保持一定距离。当管径≤φ42mm时最小管距离应≥35mm;当管径≤φ75mm时,最小管壁距离应≥45mm;当管径≤φ127mm时,最小管壁距离应≥55mm。
⑥管子规格不允许小于图纸要求。
⑦整个管线要求尽量短,转弯处少,平滑过渡,减少上下弯曲,保证管路的伸缩变形,管路的长度应能保证接头及辅件的自由拆装,又不影响其它管路。
⑧管路不允许在有弧度部分内连接或安装法兰。法兰及接头焊接时,须与管子中心线垂直。
⑨管路应在最高点设置排气装置。
⑩管路敷设后,不应对支承及固定部件产生除重力之外的力。
(4)管路的焊接
管路的焊接一般分三步进行。
①管道在焊接前,必须对管子端部开坡口,当焊缝坡口过小时,会引起管壁未焊透,造成管路焊接强度不够;当坡口过大时,又会引起裂缝、夹渣及焊缝不齐等缺陷。坡口角度应根据国标要求中最利于焊接的种类执行。坡口的加工最好采用坡口机,采用机械切削方法加工坡口既经济,效率又高,操作又简单,还能保证加工质量。
②焊接方法的选择是关系到管路施工质量最关键的一环,必须引起高度重视。目前广泛使用氧气-乙炔焰焊接,手工电弧焊接、氩气保护电弧焊接三种,其中最适合液压管路焊接的方法是氩弧焊接,它具有焊口质量好,焊缝表面光滑、美观,没有焊渣,焊口不氧化,焊接效率高等优点。另两种焊接方法易造成焊渣进入管内,或在焊口内壁产生大量氧化铁皮,难以清除。实践证明:一旦造成上述后果,无论如何处理,也很难达到系统清洁度指标。所以不要轻易采用。如遇工期短、氩弧焊工少时,可考虑采用氩弧焊焊第一层(打底),第二层开始用电焊的方法,这样既保证了质量,又可提高施工效率。
③管路焊接后要进行焊缝质量检查。检查项目包括:焊缝周围有无裂纹、夹杂物、气孔及过大咬肉、飞溅等现象;焊道是否整齐、有无错位、内外表面是否突起、外表面在加工过程中有无损伤或削弱管壁强度的部位等。对高压或超高压管路,可对焊缝采用射线检查或超声波检查,提高管路焊接检查的可靠性。
1.4 管道的处理
管路安装完成后要对管道进行酸洗处理。酸洗的目的是通过化学作用将金属管内表面的氧化物及油污去除,使金属表面光滑。保证管道内壁的清洁。酸洗管道是保证液压系统可靠性的一个关键环节,必须加以重视。
1.4.1管道酸洗
管道酸洗方法目前在施工中均采用槽式酸洗法和管内循环酸洗法两种。
槽式酸洗法:就是将安装好的管路拆下来,分解后放入酸洗槽内浸泡,处理合格后再将其进行二次安装。此方法较适合管径较大的短管、直管、容易拆卸、管路施工量小的场合,如泵站、阀站等液压装置内的配管及现场配管量小的液压系统,均可采用槽式酸洗法。
管内循环酸洗法:在安装好的液压管路中将液压元器件断开或拆除,用软管、接管、冲洗盖板联接,构成冲洗回路。用酸泵将酸液打入回路中进行循环酸洗。该酸洗方法是近年来较为先进的施工技术,具有酸洗速度快、效果好、工序简单、操作方便,减少了对人体及环境的污染,降低了劳动强度,缩短了管路安装工期,解决了长管路及复杂管路酸洗难的问题,对槽式酸洗易发生装配时的二次污染问题,从根本上得到了解决。已在大型液压系统管路施工中得到广泛应用。
1.4.2 管道酸洗工艺
有无科学、合理的工艺流程、酸洗配方和严格的操作规程,是管道酸洗效果好坏的关键,目前国内外酸洗工艺较多,必须慎重选择、高度重视。管道酸洗配方及工艺不合理会造成管内壁氧化物不能彻底除净、管壁过腐蚀、管道内壁再次锈蚀及管内残留化学反应沉积物等现象的发生。为便于使用,现将实践中筛选出的一组酸洗效果较好的管道酸洗工艺介绍如下:
槽式酸洗工艺流程及配方
(1)脱脂
脱脂液配方为:
ω(NaOH)=9%~10%;
ω(Na3PO4)=3%;
ω(NaHCO3)=1.3%;
ω(Na2SO3)=2%;
其余为水
操作工艺要求为:温度70~80℃,浸泡4h。
(2)水冲
压力为0.8MPa的洁净水冲干净。
(3)酸洗
酸洗液配方为:
ω(HCl)=13%~14%;
ω[(CH2)6N4]=1%;
其余为水。
操作工艺要求为:常温浸泡1.5h~2h。
(4)水冲
用压力为0.8MPa的洁净水冲干净。
(5)二次酸洗
酸洗液配方同上。
操作工艺要求为:常温浸泡5min。
(6)中和
中和液配方为:
NH4OH稀释至pH值在10~11的溶液。操作工艺要求为:常温浸泡2min。
(7)钝化
钝化液配方为:
ω(NaN2)=8%~10%;
ω(NH4OH)=2%;
其余为水。
操作工艺要求为:常温浸泡5min。
(8)水冲
用压力为0.8MPa的净化水冲净为止。
(9)快速干燥
用蒸汽、过热蒸汽或热风吹干
(10)封管口
用塑料管堵或多层塑料布捆扎牢固。
如按以上方法处理的管子,管内清洁、管壁光亮,可保持二个月左右不锈蚀;若保存好,还可以延长时间。
循环酸洗工艺流程及配方
(1)试漏
用压力为1MPa压缩空气充入试漏。
(2)脱脂
脱脂液配方与槽式酸洗工艺中脱脂液配方相同。
操作工艺要求为:温度40~50℃连续循环3h。
(3)气顶
用压力为0.8MPa压缩空气将脱脂液顶出。
(4)水冲
用压力为0.8MPa的洁净水冲出残液。
(5)酸洗
酸洗液配方为:
ω(HCl)=9%~11%;
ω[(CH2)6N4]=1%;
其余为水。
操作工艺要求为:常温断续循环50min。
(6)中和
中和液配方为:
NH4OH稀释至pH值在9~10的溶液。
操作工艺要求为:常温连续循环25min。
图1 循环酸洗示意图
(7)钝化
钝化液配方为:
ω(NaNO2)=10%~14%;
其余为水。
操作工艺要求为:常温断续循环30min。
(8)水冲
用压力为0.8MPa,温度为60℃的净化水连续冲洗10min。
(9)干燥
用过热蒸汽吹干。
(10)涂油
用液压泵注入液压油。
循环酸洗注意事项:
1)使用一台酸泵输送几种介质,因此操作时应特别注意,不能将几种介质混淆(其中包括水),严重时会造成介质浓度降低,甚至造成介质报废。
2)循环酸洗应严格遵守工艺流程、统一指挥。当前一种介质完全排出或用另一种介质顶出时,应及时准确停泵,将回路末端软管从前一种介质槽中移出,放入下一工序的介质槽内。然后启动酸泵,开始计时。
1.5 管路的循环冲洗
管路用油进行循环冲洗,是管路施工中又一重要环节。管路循环冲洗必须在管路酸洗和二次安装完毕后的较短时间内进行。其目的是为了清除管内在酸洗及安装过程中以及液压元件在制造过程中遗落的机械杂质或其它微粒,达到液压系统正常运行时所需要的清洁度,保证主机设备的可靠运行,延长系统中液压元件的使用寿命。
1.5.1循环冲洗的方式
冲洗方式较常见的主要有(泵)站内循环冲洗,(泵)站外循环冲洗,管线外循环冲洗等。
站内循环冲洗:一般指液压泵站在制造厂加工完成后所需进行的循环冲洗。
站外循环冲洗:一般指液压泵站到主机间的管线所需进行的循环冲洗。
管线外循环冲洗:一般指将液压系统的某些管路或集成块,拿到另一处组成回路,进行循环冲洗。冲洗合格后,再装回系统中。
为便于施工,通常采用站外循环冲洗方式。也可根据实际情况将后两种冲洗方式混合使用,达到提高冲洗效果,缩短冲洗周期的目的。
1.5.2 冲洗回路的选定
泵外循环冲洗回路可分两种类型。即串联式冲洗回路见图2。其优点是回路连接简便、方便检查、效果可靠;缺点是回路长度较长。另一类为并联式冲洗回路见图3。其优点是循环冲洗距离较短、管路口径相近、容易掌握、效果较好;缺点是回路连接繁琐,不易检查确定每一条管路的冲洗效果,冲洗泵源较大。为克服并联式冲洗回路的缺点,也可在原回路的基础上变为串联式冲洗回路,方法见图4。但要求串联的管径相近,否则将影响冲洗效果。
图2
图3
图4
1.5.3 循环冲洗主要工艺流程及参数
(1)冲洗流量视管径大小,回路形式,进行计算,保证管路中油流成紊流状态,管内油流的流速应在3m/s以上。
(2)冲洗压力冲洗时,压力为0.3~0.5MPa,每间隔2h升压一次,压力为1.5~2MPa,运行15~30min,再恢复低压冲洗状态,从而加强冲洗效果。
(3)冲洗温度用加热器将油箱内油温加热至40~60℃,冬季施工油温可提高到80℃,通过提高冲洗温度能够缩短循环冲洗时间。
(4)振动为彻底清除粘附在管壁上的氧化铁皮、焊接和杂质,在冲洗过程中每间隔3~4h用木锤、铜锤、橡胶锤或使用震动器沿管线从头至尾进行一次敲打振动。重点敲打焊口、法兰、变径、弯头及三通等部位。敲打时要环绕管四周均匀敲打,不得伤害管子外表面。震动器的频率为50~60Hz、振幅为1.5~3mm为宜。
(5)为了进一步加强冲洗效果,可向管内充入0.4~0.5MPa的压缩空气,造成管内冲洗油的湍流,充分搅起杂质,增强冲洗效果。每班可充气两次,每次8~10min。气体压缩机空气出口处要装腔作势精度较高的过滤器。
1.5.4 循环冲洗注意事项
(1)冲洗工作应在管路酸洗后2~3星期内尽快进行,防止造成管内新的锈蚀,影响施工质量。冲洗合格后应立即注入合格的工作油液,每3天需启动设备进行循环,以防止管道锈蚀。
(2)循环冲洗要连续进行,要三班连续作业,无特殊原因不得停止。
(3)冲洗回路组成后,冲洗泵源应接在管径较粗一端的回路上,从总回油管向压力油管方向冲洗,使管内杂物能顺利冲出。
(4)自制的冲洗油箱应清洁并尽量密封,并设有空气过滤装置,油箱容量应大于液压泵流量的5倍。向油箱注油时应采用滤油小车对油液进行过滤。
(5)冲洗管路的油液在回油箱之前需进行过滤,大规格管路式回油过滤器的滤芯精度可在不同冲洗阶段根据油液清洁情况进行更换,可在100μm,50μm,20μm,10μm,5μm等滤芯规格中选择。
(6)冲洗用油一般选粘度较低的10号机械油。如管道处理较好,一般普通液压系统,也可使用工作油进行循环冲洗。对于使用特殊的磷酸酯、水乙二醇、乳化液等工作介质的系统,选择冲洗油要慎重,必须证明冲洗油与工作油不发生化学反应后方可使用。实践证明:采用乳化液为介质的系统,可用10号机械油进行冲洗。禁止使用煤油之类的对管路有害的油品做冲洗液。
(7)冲洗取样应在回油滤油器的上游取样检查。取样时间:冲洗开始阶段,杂质较多,可6~8h一次;当油的精度等级接近要求时可每2~4h取样一次。
1.6 各类液压系统清洁度指标
液压系统工作介质的清洁度或称污染度达到什么等级时可以使用,应有统一的标准。
1.6.1 国际ISO-4406油液污染度等级标准。
工作介质中含有杂质颗粒数越少,清洁度就越高,液压系统工作越可靠,因此控制液压介质内污染颗粒的大小和数量是衡量系统清洁度的一种方法(见表2)。根据该标准国际ISO还规定了不同类型液压系统应达到的污染度等级(见表3)。如果杂质微粒在显微镜下计数的数值介于两个相邻密集度之间,则污染度代号应取最大值。
表2 ISO 4406油液污染度等级标准(摘录)
密集度(微粒数/mL) 微粒尺寸5~15μm |
污染度代号 |
密集度(微粒数/mL) 微粒尺寸5~15μm |
污染度代号 |
40000 |
22 |
80 |
13 |
20000 |
21 |
40 |
12 |
10000 |
20 |
20 |
11 |
5000 |
19 |
10 |
10 |
2500 |
18 |
5 |
9 |
1300 |
17 |
2.5 |
8 |
840 |
16 |
1.3 |
7 |
320 |
15 |
0.64 |
6 |
160 |
14 |
0.32 |
5 |
例:如果每mL油液中有大于5μm的颗粒数为4,000和大于15μm的颗粒数为90时,则相应的污染度代号为19和14。因此,国际标准化组织的污染度等级代号为19/14。
表3 液压系统应用的污染度等级
系统类型 |
污染度等级指标 (5μm/15μm) |
每毫升油液中大于给定尺寸的微粒数目 |
|
5μm |
15μm |
||
污垢敏感系统 |
13/9 |
80 |
5 |
伺服和高压系统 |
15/11 |
320 |
20 |
一般机器的液压系统 |
16/13 |
640 |
80 |
中压系统 |
18/14 |
2,500 |
160 |
低压系统 |
19/15 |
5,000 |
320 |
大余隙低压系统 |
21/17 |
20,000 |
1,300 |
1.6.2 美国NAS-1638油液污染度等级标准
美国NAS油液等级标准采用颗粒计数法,已被较多国家推荐使用,它对油液内污染颗粒的大小规定和更加详细,如表4所示。
表4 NAS1638污染度等级
(100mL油中允许粒子数)(摘录)
NAS等级 |
不同粒子直径(μm)允许的个数 |
||||
5~15 |
15~25 |
25~50 |
50~100 |
>100 |
|
1 |
500 |
89 |
16 |
3 |
1 |
2 |
1,000 |
178 |
32 |
6 |
1 |
3 |
2,000 |
256 |
63 |
11 |
2 |
4 |
4,000 |
712 |
126 |
22 |
4 |
5 |
8,000 |
1,425 |
253 |
45 |
8 |
6 |
16,000 |
2,850 |
506 |
90 |
16 |
7 |
32,000 |
5,700 |
1,012 |
180 |
32 |
8 |
64,000 |
11,400 |
2,025 |
360 |
64 |
9 |
128,000 |
22,800 |
4,050 |
720 |
128 |
10 |
256,000 |
45,600 |
8,100 |
1,440 |
256 |
11 |
512,000 |
91,200 |
16,200 |
2,880 |
512 |
12 |
1,024,000 |
182,400 |
32,400 |
5,760 |
1,024 |
13 |
2,048,000 |
364,800 |
64,800 |
11,520 |
2,050 |
NAS1638等级标准限定各类液压系统油液允许的污染度等级(见表5)(注:此标准较为宽松)。目前国外制造出厂的液压系统,开始使用时的油液污染度等级都控制在NAS7级以上,当使用后降到NAS9级时,液压系统一般不会出现故障,当污染度等级降到NAS10~11级时,液压系统会偶尔出现故障。当油液的污染度等级降到NAS12级以下时,则会经常出现故障,此时必须对液压油进行循环过滤。
表5 液压系统油液允许污染度等级
– END –
原文始发于微信公众号(液压传动与控制):液压系统的安装
原创文章,作者:腾益登,如若转载,请注明出处:https://www.ihydrostatics.com